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Abstract—In this paper we outline VOLLO®, a highly per-
formant inference library for low latency LSTM acceleration.
Building on Intel ® Agilex® FPGA technology we highlight
the technology advantages for running small LSTM models as
presented in the STAC-ML™ Markets (inference) benchmark.
We show that VOLLO can achieve a latency as low as 24
microseconds on small LSTM models. We present a highly dense
1U server configuration using Agilex FPGA accelerator cards to
demonstrate a system that can maintain low latency operation
when running up to 48 separate inference models simultaneously.

I. INTRODUCTION

Machine Learning (ML) has found many applications in the
financial services industry, including trading, pricing and risk
analysis [1]. Algorithmic trading, which accounts for around
two thirds [2] of all US equity trading, has extended from
simple arbitrage models to more complex machine learning
models. Growth in the use of ML in algorithmic trading has
been accompanied by demand for reductions in latency in
order for traders to be more competitive. This enables traders
to react faster to changes in the market and to make more
intelligent decisions within a given latency window.

Financial firms use a variety of machine learning tech-
niques, including LSTM based neural networks [3], which are
well-suited for time series prediction. The STAC Benchmark
Council™, an organisation comprising over 400 financial
institutions and 50 leading technology vendors, has recently
established the STAC-ML Markets (Inference) Benchmark
(henceforth simply STAC-ML) [4] to enable financial institu-
tions to compare performance of LSTM based deep-learning
models on different platforms in a controlled manner. Myrtle.ai
has taken on the challenge of demonstrating excellent results
against those benchmarks. This paper reviews the approach
adopted and the results obtained.

II. STAC-ML DESCRIPTION

STAC-ML has been developed by financial firms to repre-
sent a key AI workload in finance. We give a summary of
the benchmark here, describing the key components which
are relevant for the performance analysis. For a detailed
account of the benchmark, refer to the STAC-ML at https:
//STACresearch.com/ml.

Fig. 1. Architecture of STAC-ML Markets (Inference) Benchmark LSTM
models

A. Benchmark Models

The benchmark describes three stacked LSTM models with
similar architectures but different sizes. These are referred to
as LSTM A (smallest), LSTM B and LSTM C (largest).

The structure of the LSTM models used in the benchmark
is shown in Figure 1. The three models consist of a stack
of LSTMs with a final linear layer to reduce the output to a
single result. The models are summarized in Table I, with exact
parameterization available in the STAC-ML specification:

Model Model Size (fp32) FLOPS Relative Size
LSTM A 640KB 16 MFLOP 1
LSTM B 4MB 200 MFLOP 6
LSTM C 120MB 6 GFLOP 187

TABLE I
STAC-ML MARKETS (INFERENCE) BENCHMARK MODELS

STAC-ML presents a distinct inference challenge, due to
the range of size of models that must perform well on one
platform. Compared to MLCommons benchmark models [5],
which are typically on order of GFLOPS per input, LSTM A
in particular is a distinctly small model. LSTM C, at over 180
times larger than LSTM A, requires the inference platform to
be effective across two orders of magnitude of model compute.

B. STAC-ML Performance Metrics

STAC-ML primarily reports performance for latency and
throughput. In addition, it also highlights system performance,
normalizing results for power consumption and physical rack
space required.

Given a target deployment in algorithmic trading platforms,
latency is a key metric of interest to financial firms using
LSTM models. Low latency processing requires high compute
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utilization at low batch sizes which is difficult to achieve on
traditional processor architectures, such as CPUs and GPUs,
due to challenges with low latency core-to-core communica-
tion and lack of explicit memory control. As such this bench-
mark is anticipated to show promising results from alternative
AI processing platforms with different architectures, such as
AI inference ASICs and FPGAs.

A further differentiator of STAC-ML to other inference
benchmark challenges is the inclusion of the number of
parallel model instances (NMI) as a parameter of interest
in the benchmark. Number of Model Instances is defined
as the number of independent model instances that can be
inferred on a system at the same time. This scenario highlights
systems that can be segmented into different inference engines
to run independently. An example of this would be running
independent inferences on each of a CPU core, or using Multi-
Instance GPU (MIG) mode on a GPU. One example of how
this might be used in a financial model setting is where
different trained models are used for different stock purchase
decisions and systems are inferring on common data input,
with different model parameters.

STAC-ML is targeted to applications that typically run in
exchange co-located data centers, where physical equipment
space incurs a higher premium rental price than other sce-
narios. STAC-ML challenges solution vendors to consider the
density of the solutions that they can provide. This is reflected
in physical density metrics for inferences per second per cubic
foot, highlighting systems that make the most efficient use of
physical space.

C. Benchmark Model Accuracy

STAC-ML includes accuracy results, rather than requiring a
particular accuracy threshold to be met. This enables a range
of inference solutions using different numerical precision to be
submitted and compared. STAC-ML rules enable solutions to
be compared only if the system with higher performance also
achieves better or equal accuracy. Accuracy measurements are
quantified as an absolute variation from a fp64 reference im-
plementation, which provides a very high degree of resolution
for understanding even small changes in accuracy from the
fp64 baseline.

Accuracy of deep-learning model inference is influenced
most heavily by the choice of numerical precision adopted in
the solution. Quantization is a well understood technique im-
proving inference performance, but typically trades off against
model accuracy. Quantizing a model consists of using a dif-
ferent numerical format for the parameters and/or activations.
This lowers the power consumption and latency, as both the
memory requirements are reduced and the operations can be
more efficiently executed in hardware. Converting parameters
and activations to a different number format may require not
only a reduction in the number of bits used to represent each
value (e.g. 16 bits instead of 32 bits), but also a change to the
arithmetic used when executing operations with these values
(e.g. integer arithmetic instead of floating point).

Fig. 2. bfloat16 Floating Point Format as compared to Single and Half
precision IEEE Floating Point Formats

Brain Floating Point 16 format (bfloat16), as illustrated
in Figure 2, is a popular format with common support in
AI hardware including Google’s TPU [6], Nvidia GPU [7],
Intel CPU [8] and Intel FPGA [9]. The format was designed
to provide efficient training performance. It keeps the same
dynamic range of fp32, to simplify model training [10];
avoiding some of the complications encountered in training
using fp16, which can require additional techniques [11]. This
format has been shown to give near negligible accuracy drop
over models trained at fp32 when applied to a range of neural
network applications [12] and can be computed with smaller
silicon area than fp32 format, resulting in both faster training
and inference [6].

The VOLLO inference library uses bfloat16, so that models
can be quickly and easily trained in bfloat16 on standard GPU
hardware, and then run in that same format for inference,
ensuring that all the accuracy of the trained model is preserved,
as no conversion of the model is required between training and
inference. Training in bfloat16 in PyTorch is simply achieved
by specifying the data type as bfloat16, with no further pre or
post modification steps required.

III. AGILEX INFERENCE SOLUTION

A. Agilex FPGA features for high performance inference

The Agilex FPGA family has recently been launched by Intel.
The family includes a range of FPGAs targeted to different end
applications. Focusing on the F-series devices, built on 10nm
SuperFin technology, the FPGA device contains advanced
DSP blocks that support a range of fixed and floating point
multipliers, central to the performance of AI computation on
FPGA. Table II shows the numerical support in the Agilex
DSP blocks compared to the previous Stratix 10 FPGA family.
The addition of fp16 and bfloat16 formats in this family offers
a good trade in accuracy and performance for Deep-learning
models [13].

Format Stratix 10 Mults per DSP Agilex Mults per DSP
fp32 1 1
fp16 - 2
bfloat16 - 2
INT8 2 4

TABLE II
MULTIPLICATION SUPPORT IN AGILEX AND STRATIX 10 FPGA DSPS

In addition to compute resource, memory availability and ar-
chitecture are critical for efficient inference. The F-series Ag-



Fig. 3. Evaluation of three timesteps of an LSTM layer. The sequential
evaluation path is highlighted and the weights for the LSTM hidden MxV
need to be in a high-bandwidth cache for maximum performance.

ilex devices contain hardened memory controllers for DDR4
as well as 259Mb of onchip SRAM.

A further innovation in the Agilex devices is the second
generation Intel hyperflex FPGA architecture. This allows
designs to achieve higher timing closure via additional pipeline
registers within the device routing networks. The use of these
registers enables deeper pipelines on timing critical signals,
without consuming registers in logic elements.

B. Design considerations for low latency LSTM inference

Evaluating an LSTM model at low-latency is difficult due to
the recursive nature of the LSTM layer. This introduces two
design challenges: high memory intensity driven by the matrix-
vector computation; and the need for low latency core-to-core
communication to enable parallelism within a layer.

The LSTM layer, illustrated in Figure 3, is recursive, that
is, the output of evaluating a timestep feeds into the input
of the LSTM for the next timestep. This creates a long
sequential path which includes the hidden unit matrix-vector
multiplication.

To maximise performance of the inference solution, it is
important that the weights of matrix-vector multiplication fit
into a local cache with very high memory bandwidth, as this
computation has an arithmetic intensity of 0.5 at fp32 and
otherwise will be limited by memory bandwidth.

The sequential evaluation path in the LSTM layer also
creates a second challenge. In order to scale efficiently across
different processing units, the activation, ht, must be synchro-
nized at every timestep.

Both CPUs and GPUs cannot efficiently synchronize data
over processing units and so can be inefficient when paralleliz-
ing small models. For bigger models, such as LSTM C, it is
challenging to fit the hidden matrix within a high bandwidth
cache.

The FPGA can overcome both these challenges to provide
an efficient inference platform for low latency LSTM models.
Synchronizing different processing units is straightforward in
an FPGA fabric, and the Agilex FPGA has sufficient on-chip
SRAM to hold the hidden matrix in high bandwidth memory.

C. VOLLO Inference Library using Agilex AGF027

To realise low latency inference of the STAC-ML LSTM mod-
els on FPGA, Myrtle.ai provide VOLLO, a highly optimized

Fig. 4. VOLLO compute core architecture on Intel Agilex FPGA

inference library that uses Intel Agilex AGF027 for inference
computation. The VOLLO inference library includes a soft-
ware application for Intel CPU and an accelerator bitstream
for the Intel Agilex FPGA. This bitstream implements a VLIW
processor core architecture with a sequential execution path
consisting of a matrix-vector unit, an addition unit and a LSTM
unit. The Agilex AGF027 contains 12 VOLLO compute cores
which are connected by a high-bandwidth network-on-chip
(NOC). The FPGA uses a core processing frequency of 280
MHz in this design.

Each VOLLO compute core connects to the host CPU
via PCIe, to DDR4 memory and to the other cores via a
soft Network on Chip (NOC) routing network. The routing
network between each pair of neighbouring cores carries 8
bfloat16 values on each clock cycle, resulting in an internal
bus bandwidth of 4.5GB/s.

The architecture of the VOLLO compute core, optimized
for Intel Agilex FPGA, is shown in Figure 4. This has all the
functionality required to implement a range of LSTM models.

External DDR4 memory is used to store model weights
and cell state activations for the larger LSTM C model, with
the hidden layer matrix being stored in on chip SRAM, to
provide a very high bandwidth for this critical component of
the inference solution.

Being designed as a native batch 1 computation engine
means that the solution can make efficient use of the com-
pute and memory resources, when targeting latency critical
workloads, such as STAC-ML.

D. Programming Model and Software API

To enable the user to independently generate and deploy
LSTM models for inference, the VOLLO inference library
provides a PyTorch based model zoo of supported LSTM
configurations. These can be trained in the customer’s own ML
environment and then exported as an ONNX model file, using
export scripts provided. The CPU software API provided with
the FPGA inference solution accepts ONNX model inputs at
runtime, enabling customers to use the solution with their own
trained models, as for other inference products, and without
any knowledge or use of FPGA toolchains.



The VOLLO compute cores are configured by the VOLLO
inference library, depending on the models selected for use
by the user. The cores can be partitioned to support multiple
model instances per FPGA accelerator, or can work together
to provide lowest latency processing on a single LSTM model.

IV. RESULTS

A. Methodology
We present results of the performance of the VOLLO inference
library running on Agilex AGF027 FPGA. All results pre-
sented here were recorded during a STAC Audit of STAC-ML.
These independently validated results were published by STAC
and are available at https://STACresearch.com/MRTL221125.

The inference solution that was audited used a BittWare
TeraBox 1402B server, comprising an Intel Xeon® Platinum
8351N CPU with 36 cores running at 2.40GHz and four
BittWare IA-840F PCIe Accelerator cards containing Intel
Agilex AGF027 devices. This 1U server was selected in order
to demonstrate high system density suitable for co-located
server environments.

To make use of four accelerator cards the VOLLO bitstream
is duplicated on each card, offering a higher supported number
of model instances (NMI) for the system, therefore increasing
throughput and system density metrics. Model latency is not
affected by use of more than one card.

B. Model Latency
Table III shows the latency achieved for the inference

solution for 1 model instance per card, representing the fastest
possible latency. We present figures for 99%-ile latency for
VOLLO.

VOLLO
Model VOLLO NMI per card 99%-ile Latency (ms)
LSTM A 1 0.0241
LSTM B 1 0.0648
LSTM C 1 1.35

TABLE III
LOWEST LATENCY RESULTS FOR STAC-ML MARKETS (INFERENCE)

BENCHMARK - SUT ID MRTL221125
STAC-ML.MARKETS.INF.S.LSTM [A,B,C].4.LAT.V1

Figures 5 and 6 show the behaviour of latency for VOLLO
as the number of model instances per accelerator card increase.
In the case of LSTM A the latency increases only marginally
from one model instance to 3 model instances per card as
the smaller LSTM A does not use the entire capacity of
the FPGA. Once the FPGA capacity is used, then latency is
increased with more model instances as the accelerator uses
less resource per model instance.

C. Model Throughput
Table IV shows the model throughput achieved for the

inference solution for the largest achievable throughput config-
uration. When using VOLLO, highest throughput is achieved
with the highest number of model instances (NMI). The table
includes the latency achieved in that scenario, demonstrating
that high throughput can be achieved while maintaining low
latency.

Fig. 5. LSTM A 99%-ile latency with multiple model instances
STAC-ML Markets (Inference) - SUT ID MRTL221125 STAC-
ML.Markets.Inf.S.LSTM A.[4,12,24,48].LAT.v1

Fig. 6. LSTM B 99%-ile latency with multiple model instances
STAC-ML Markets (Inference) - SUT ID MRTL221125 STAC-
ML.Markets.Inf.S.LSTM B.[4,8,16].LAT.v1

D. System Power and Physical Density

The VOLLO System Under Test used in the STAC Audit
consumes 1 rack unit, as a 1U full width, full length server,
with a total volume of 1.0065 cubic feet. The system power
ranges from 487W to 593W for the different measurement
scenarios at approximately 20°C ambient inlet temperature.

Table V shows the achieved system power density for the
system. The table below shows power efficiency for the highest
throughput configuration (highest NMI per card) for each
LSTM model, where the system is most highly utilized.

V. CONCLUSION

The audited results for VOLLO in STAC-ML highlight the
effectiveness of an FPGA solution for low latency LSTM
inference, achieving latency as low as 24 microseconds. The
solution achieves low latency processing across a range of
LSTM model sizes. Furthermore the VOLLO inference li-
brary enables users to maintain low latency processing while
deploying multiple independent model instances for parallel
inference on one system, with a latency increase of only 3.1x



VOLLO VOLLO
Model VOLLO NMI Throughput (inf/s) 99%-ile Latency (ms)
LSTM A 48 650, 803 0.0739
LSTM B 16 109, 211 0.147
LSTM C 4 2, 979 1.35

TABLE IV
HIGHEST THROUGHPUT RESULTS FOR STAC-ML MARKETS (INFERENCE)

BENCHMARK - SUT ID MRTL221125
STAC-ML.MARKETS.INF.S.LSTM A.48[TPUT,LAT].V1
STAC-ML.MARKETS.INF.S.LSTM B.16[TPUT,LAT].V1
STAC-ML.MARKETS.INF.S.LSTM C.4[TPUT,LAT].V1

Model NMI VOLLO (inf/s/kW)
LSTM A 48 1, 183, 279
LSTM B 16 186, 489
LSTM C 4 5, 023

TABLE V
POWER EFFICIENCY RESULTS FOR STAC-ML MARKETS (INFERENCE)

BENCHMARK - SUT ID MRTL221125
STAC-ML.MARKETS.INF.S.LSTM A.48.ENERG EFF.V1
STAC-ML.MARKETS.INF.S.LSTM B.16.ENERG EFF.V1
STAC-ML.MARKETS.INF.S.LSTM C.4.ENERG EFF.V1

for LSTM A and 2.3x for LSTM B between a single model
instance per card and the maximum supported model instances
per card. For LSTM A, up to 48 independent model instances
can be computed on the system with a 99%-ile latency of 72.9
microseconds.

The space and power efficiency of the system are high-
lighted by providing results for a 1U system containing 4
Agilex FPGAs and consuming a maximum power of under
600W in all test scenarios.

Using the Agilex FPGA in conjunction with VOLLO en-
ables customers to access this technology without specialist
knowledge of FPGA programming languages or toolchains.
The use of bfloat16 in the implementation has enabled a fast
inference solution that can be trained at equivalent perfor-
mance to an fp32 solution, with models inferred without any
further conversion losses between training and inference.

Intel, the Intel logo, and other Intel marks are trademarks of
Intel Corporation or its subsidiaries.
”STAC” and all STAC names are trademarks or registered
trademarks of the Securities Technology Analysis Center, LLC.
PyTorch, the PyTorch logo and any related marks are trade-
marks of The Linux Foundation.
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